Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
ACS Appl Mater Interfaces ; 15(16): 20483-20494, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2297232

ABSTRACT

Surface ligands play a critical role in controlling and defining the properties of colloidal nanocrystals. These aspects have been exploited to design nanoparticle aggregation-based colorimetric sensors. Here, we coated 13-nm gold nanoparticles (AuNPs) with a large library of ligands (e.g., from labile monodentate monomers to multicoordinating macromolecules) and evaluated their aggregation propensity in the presence of three peptides containing charged, thiolate, or aromatic amino acids. Our results show that AuNPs coated with the polyphenols and sulfonated phosphine ligands were good choices for electrostatic-based aggregation. AuNPs capped with citrate and labile-binding polymers worked well for dithiol-bridging and π-π stacking-induced aggregation. In the example of electrostatic-based assays, we stress that good sensing performance requires aggregating peptides of low charge valence paired with charged NPs with weak stability and vice versa. We then present a modular peptide containing versatile aggregating residues to agglomerate a variety of ligated AuNPs for colorimetric detection of the coronavirus main protease. Enzymatic cleavage liberates the peptide segment, which in turn triggers NP agglomeration and thus rapid color changes in <10 min. The protease detection limit is 2.5 nM.


Subject(s)
Colorimetry , Metal Nanoparticles , Colorimetry/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Polymers , Ligands
2.
Chemical science ; 14(10):2659-2668, 2023.
Article in English | EuropePMC | ID: covidwho-2254326

ABSTRACT

Electrostatic interactions are a key driving force that mediates colloidal assembly. The Schulze-Hardy rule states that nanoparticles have a higher tendency to coagulate in the presence of counterions with high charge valence. However, it is unclear how the Schulze–Hardy rule works when the simple electrolytes are replaced with more sophisticated charge carriers. Here, we designed cationic peptides of varying valencies and demonstrate that their charge screening behaviors on anionic gold nanoparticles (AuNPs) follow the six-power relationship in the Schulze–Hardy rule. This finding further inspires a simple yet effective strategy for measuring SARS-CoV-2 main protease (Mpro) via naked eyes. This work provides a unique avenue for fundamental NP disassembly based on the Schulze–Hardy rule and can help design versatile substrates for colorimetric sensing of other proteases. Electrostatic interactions are a key driving force that mediates colloidal assembly.

3.
Anal Chem ; 95(7): 3789-3798, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2254734

ABSTRACT

Transmembrane protease serine 2 (TMPRSS2) is a plasma membrane protease that activates both spike protein of coronaviruses for cell entry and oncogenic signaling pathways for tumor progression. TMPRSS2 inhibition can reduce cancer invasion and metastasis and partially prevent the entry of SARS-CoV-2 into host cells. Thus, there is an urgent need for both TMPRSS2-selective imaging and precise screening of TMPRSS2 inhibitors. Here, we report a TMPRSS2-responsive surface-potential-tunable peptide-conjugated probe (EGTP) with aggregation-induced emission (AIE) features for TMPRSS2 selective imaging and accurate inhibitor screening. The amphiphilic EGTP was constructed with tunable surface potential and responsive efficiency with TMPRSS2 and its inhibitor. The rational construction of AIE luminogens (AIEgens) with modular peptides indicated that the cleavage of EGTP led to a gradual aggregation with bright fluorescence in high TMPRSS2-expressing cells. This strategy may have value for selective detection of cancer cells, SARS-CoV-2-target cells, and screening of protease inhibitors.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , SARS-CoV-2 , Cell Membrane , Protease Inhibitors , Virus Internalization , Serine Endopeptidases
4.
Chem Sci ; 14(10): 2659-2668, 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2254330

ABSTRACT

Electrostatic interactions are a key driving force that mediates colloidal assembly. The Schulze-Hardy rule states that nanoparticles have a higher tendency to coagulate in the presence of counterions with high charge valence. However, it is unclear how the Schulze-Hardy rule works when the simple electrolytes are replaced with more sophisticated charge carriers. Here, we designed cationic peptides of varying valencies and demonstrate that their charge screening behaviors on anionic gold nanoparticles (AuNPs) follow the six-power relationship in the Schulze-Hardy rule. This finding further inspires a simple yet effective strategy for measuring SARS-CoV-2 main protease (Mpro) via naked eyes. This work provides a unique avenue for fundamental NP disassembly based on the Schulze-Hardy rule and can help design versatile substrates for colorimetric sensing of other proteases.

5.
Angew Chem Int Ed Engl ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2241865

ABSTRACT

Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ) x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro, a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.

6.
Nano Lett ; 22(22): 8932-8940, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2106310

ABSTRACT

Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Gold , Surface Plasmon Resonance/methods , Ligands , SARS-CoV-2 , Peptides
7.
Anal Chem ; 94(34): 11728-11733, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1991486

ABSTRACT

Existing tools to detect and visualize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suffer from low selectivity, poor cell permeability, and high cytotoxicity. Here we report a novel self-immolative fluorescent probe (MP590) for the highly selective and sensitive detection of the SARS-CoV-2 main protease (Mpro). This fluorescent probe was prepared by connecting a Mpro-cleavable peptide (N-acetyl-Abu-Tle-Leu-Gln) with a fluorophore (i.e., resorufin) via a self-immolative aromatic linker. Fluorescent titration results show that MP590 can detect Mpro with a limit of detection (LoD) of 35 nM and is selective over interferents such as hemoglobin, bovine serum albumin (BSA), thrombin, amylase, SARS-CoV-2 papain-like protease (PLpro), and trypsin. The cell imaging data indicate that this probe can report Mpro in HEK 293T cells transfected with a Mpro expression plasmid as well as in TMPRSS2-VeroE6 cells infected with SARS-CoV-2. Our results suggest that MP590 can both measure and monitor Mpro activity and quantitatively evaluate Mpro inhibition in infected cells, making it an important tool for diagnostic and therapeutic research on SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Fluorescent Dyes , COVID-19/diagnosis , Coronavirus 3C Proteases/analysis , Humans , SARS-CoV-2/enzymology
8.
ACS Nano ; 16(8): 12305-12317, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-1960249

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health and lacks an effective treatment. There is an urgent need for both real-time tracking and precise treatment of the SARS-CoV-2-infected cells to mitigate and ultimately prevent viral transmission. However, selective triggering and tracking of the therapeutic process in the infected cells remains challenging. Here, we report a main protease (Mpro)-responsive, mitochondrial-targeting, and modular-peptide-conjugated probe (PSGMR) for selective imaging and inhibition of SARS-CoV-2-infected cells via enzyme-instructed self-assembly and aggregation-induced emission (AIE) effect. The amphiphilic PSGMR was constructed with tunable structure and responsive efficiency and validated with recombinant proteins, cells transfected with Mpro plasmid or infected by SARS-CoV-2, and a Mpro inhibitor. By rational construction of AIE luminogen (AIEgen) with modular peptides and Mpro, we verified that the cleavage of PSGMR yielded gradual aggregation with bright fluorescence and enhanced cytotoxicity to induce mitochondrial interference of the infected cells. This strategy may have value for selective detection and treatment of SARS-CoV-2-infected cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Peptides/pharmacology , Peptides/metabolism
9.
ACS Nano ; 16(4): 6165-6175, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1773920

ABSTRACT

We report the peptide-programmed fractal assembly of silver nanoparticles (AgNPs) in a diffusion-limited aggregation (DLA) mode, and this change in morphology generates a significant color change. We show that peptides with specific repetitions of defined amino acids (i.e., arginine, histidine, or phenylalanine) can induce assembly and coalescence of the AgNPs (20 nm) into a hyperbranched structure (AgFSs) (∼2 µm). The dynamic process of this assembly was systematically investigated, and the extinction of the nanostructures can be modulated from 400 to 600 nm by varying the peptide sequences and molar ratio. According to this rationale, two strategies of SARS-CoV-2 detection were investigated. The activity of the main protease (Mpro) involved in SARS-CoV-2 was validated with a peptide substrate that can bridge the AgNPs after the proteolytic cleavage. A sub-nanomolar limit of detection (0.5 nM) and the capacity to distinguish by the naked eye in a wide concentration range (1.25-30 nM) were achieved. Next, a multichannel sensor-array based on multiplex peptides that can visually distinguish SARS-CoV-2 proteases from influenza proteases in doped human samples was investigated.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Silver/chemistry , Metal Nanoparticles/chemistry , Colorimetry , Limit of Detection , Fractals , SARS-CoV-2 , COVID-19/diagnosis , Peptides , Peptide Hydrolases , Biomarkers
10.
Chem Mater ; 34(3): 1259-1268, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1655408

ABSTRACT

There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.

11.
Angew Chem Int Ed Engl ; 61(9): e202112995, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1633678

ABSTRACT

The transmission of SARS-CoV-2 coronavirus has led to the COVID-19 pandemic. Nucleic acid testing while specific has limitations for mass surveillance. One alternative is the main protease (Mpro ) due to its functional importance in mediating the viral life cycle. Here, we describe a combination of modular substrate and gold colloids to detect Mpro via visual readout. The strategy involves zwitterionic peptide that carries opposite charges at the C-/N-terminus to exploit the specific recognition by Mpro . Autolytic cleavage releases a positively charged moiety that assembles the nanoparticles with rapid color changes (t<10 min). We determine a limit of detection for Mpro in breath condensate matrices <10 nM. We further assayed ten COVID-negative subjects and found no false-positive result. In the light of simplicity, our test for viral protease is not limited to an equipped laboratory, but also is amenable to integrating as portable point-of-care devices including those on face-coverings.


Subject(s)
COVID-19/diagnosis , Coronavirus 3C Proteases/metabolism , Peptides/metabolism , SARS-CoV-2/metabolism , Biomarkers/metabolism , Breath Tests , COVID-19/virology , Colorimetry/methods , Humans , Limit of Detection , Proteolysis
12.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750504

ABSTRACT

Personal protective equipment (PPE) including N95 respirators are critical for persons exposed to SARS-CoV-2. KN95 respirators and N95 decontamination protocols have been described as solutions to a lack of such PPE. However, there are a few materials science studies that characterize the charge distribution and physical changes accompanying disinfection treatments particularly heating. Here, we report the filtration efficiency, dipole charge density, and fiber integrity of pristine N95 and KN95 respirators before and after various decontamination methods. We found that the filter layer of N95 is 8-fold thicker than that of KN95, which explains its 10% higher filtration efficiency (97.03 %) versus KN95 (87.76 %) under pristines condition. After 60 minutes of 70 degrees C treatment, the filtration efficiency and dipole charge density of N95 became 97.16% and 12.48 microC/m2, while those of KN95 were 83.64% and 1.48 microC/m2 ;moreover, fit factor of N95 was 55 and that of KN95 was 2.7. In conclusion, the KN95 respirator is an inferior alternative of N95 respirator. In both systems, a loss of electrostatic charge does not directly correlate to a decrease in performance.

13.
J Clin Med ; 9(9)2020 Sep 17.
Article in English | MEDLINE | ID: covidwho-1389407

ABSTRACT

Various breathing and cough simulators have been used to model respiratory droplet dispersion and viral droplets, in particular for SARS-CoV-2 modeling. However, limited data are available comparing these cough simulations to physiological breathing and coughing. In this study, three different cough simulators (Teleflex Mucosal Atomization Device Nasal (MAD Nasal), a spray gun, and GloGermTM MIST) that have been used in the literature were studied to assess their physiologic relevance. Droplet size, velocity, dispersion, and force generated by the simulators were measured. Droplet size was measured with scanning electron microscopy (SEM). Slow-motion videography was used to 3D reconstruct and measure the velocity of each simulated cough. A force-sensitive resistor was used to measure the force of each simulated cough. The average size of droplets from each cough simulator was 176 to 220 µm. MAD Nasal, the spray gun, and GloGermTM MIST traveled 0.38 m, 0.89 m, and 1.62 m respectively. The average velocities for the MAD Nasal, spray gun, and GloGermTM MIST were 1.57 m/s, 2.60 m/s, and 9.27 m/s respectively, and all yielded a force of <0.5 Newtons. GloGermTM MIST and the spray gun most closely resemble physiological coughs and breathing respectively. In conclusion, none of the simulators tested accurately modeled all physiologic characteristics (droplet size, 3-D dispersion velocity, and force) of a cough, while there were various strengths and weaknesses of each method. One should take this into account when performing simulations with these devices.

14.
Anal Chem ; 93(31): 11025-11032, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1324401

ABSTRACT

Facemasks in congregate settings prevent the transmission of SARS-CoV-2 and help control the ongoing COVID-19 global pandemic because face coverings can arrest transmission of respiratory droplets. While many groups have studied face coverings as personal protective equipment, these respiratory droplets can also serve as a diagnostic fluid to report on health state; surprisingly, studies of face coverings from this perspective are quite limited. Here, we determined the concentration and distribution of aerosolized saliva (via α-amylase levels) captured on various face coverings. Our results showed that α-amylase accumulated on face coverings in a time-dependent way albeit at different levels, e.g., neck gaiters and surgical masks captured about 3-fold more α-amylase than cloth masks and N95 respirators. In addition, the saliva aerosols were primarily detected on the inner layer of multilayered face coverings. We also found that the distribution of salivary droplets on the mask correlated with the morphologies of face coverings as well as their coherence to the face curvature. These findings motivated us to extend this work and build multifunctional sensing strips capable of detecting biomarkers in situ to create "smart" masks. The work highlights that face coverings are promising platforms for biofluid collection and colorimetric biosensing, which bode well for developing surveillance tools for airborne diseases.


Subject(s)
COVID-19 , Saliva , Aerosols , Humans , Masks , SARS-CoV-2
15.
ACS Appl Mater Interfaces ; 12(49): 54473-54480, 2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-951226

ABSTRACT

N95 decontamination protocols and KN95 respirators have been described as solutions to a lack of personal protective equipment. However, there are a few material science studies that characterize the charge distribution and physical changes accompanying disinfection treatments, particularly heating. Here, we report the filtration efficiency, dipole charge density, and fiber integrity of N95 and KN95 respirators before and after various decontamination methods. We found that the filter layers in N95 and KN95 respirators maintained their fiber integrity without any deformations during disinfection. The filter layers of N95 respirators were 8-fold thicker and had 2-fold higher dipole charge density than that of KN95 respirators. Emergency Use Authorization (EUA)-approved KN95 respirators showed filtration efficiencies as high as N95 respirators. Interestingly, although there was a significant drop in the dipole charge in both respirators during decontamination, there was no remarkable decrease in the filtration efficiencies due to mechanical filtration. Cotton and polyester face masks had a lower filtration efficiency and lower dipole charge. In conclusion, a loss of electrostatic charge does not directly correlate to the decreased performance of either respirator.

16.
Am J Ophthalmol ; 222: 76-81, 2021 02.
Article in English | MEDLINE | ID: covidwho-797551

ABSTRACT

PURPOSE: The global COVID-19 pandemic has resulted in a renewed focus on the importance of personal protective equipment (PPE) and other interventions to decrease spread of infectious diseases. Although several ophthalmology organizations have released guidance on appropriate PPE for surgical procedures and ophthalmology clinics, there is limited experimental evidence that demonstrates the efficacy of various interventions that have been suggested. In this study, we evaluated high-risk aspects of the slit-lamp exam and the effect of various PPE interventions, specifically the use of a surgical mask and a slit-lamp shield. DESIGN: Experimental simulation study. METHODS: This was a single-center study in a patient simulation population. This study examined the presence of particles in the air near or on a slit-lamp, a simulated slit-lamp examiner, or a simulated patient using a fluorescent surrogate of respiratory droplets. RESULTS: Simulated coughing without a mask or slit-lamp shield resulted in widespread dispersion of fluorescent droplets during the model slit-lamp examination. Coughing with a mask resulted in the most significant decrease in droplets; however, particles still escaped from the top of the mask. Coughing with the slit-lamp shield alone blocked most of forward particle dispersion; however, significant distributions of respiratory droplets were found on the slit-lamp joystick and table. Coughing with both a mask and slit-lamp shield resulted in the least dispersion to the simulated examiner and the simulated patient. Scanning electron microscopy demonstrated particle sizes of 3-100 µm. CONCLUSIONS: Masking had the greatest effect in limiting spread of respiratory droplets, whereas slit-lamp shields and gloves also contributed to limiting exposure to droplets from SARS-CoV-2 during slit-lamp examination.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Patient Simulation , Personal Protective Equipment , Printing, Three-Dimensional , SARS-CoV-2 , Slit Lamp Microscopy/methods , COVID-19/epidemiology , Humans , Pandemics
17.
medRxiv ; 2020 Jul 09.
Article in English | MEDLINE | ID: covidwho-666051

ABSTRACT

Personal protective equipment (PPE) including N95 respirators are critical for persons exposed to SARS-CoV-2. KN95 respirators and N95 decontamination protocols have been described as solutions to a lack of such PPE. However, there are a few materials science studies that characterize the charge distribution and physical changes accompanying disinfection treatments particularly heating. Here, we report the filtration efficiency, dipole charge density, and fiber integrity of pristine N95 and KN95 respirators before and after various decontamination methods. We found that the filter layer of N95 is 8-fold thicker than that of KN95, which explains its 10% higher filtration efficiency (97.03 %) versus KN95 (87.76 %) under pristines condition. After 60 minutes of 70 °C treatment, the filtration efficiency and dipole charge density of N95 became 97.16% and 12.48 µC/m2, while those of KN95 were 83.64% and 1.48 µC/m2 ; moreover, fit factor of N95 was 55 and that of KN95 was 2.7. In conclusion, the KN95 respirator is an inferior alternative of N95 respirator. In both systems, a loss of electrostatic charge does not directly correlate to a decrease in performance.

SELECTION OF CITATIONS
SEARCH DETAIL